Promoting Clean Technologies ^ Forging Cross-Industry Collaboration

Posts Tagged ‘LS9’

Eye on Algae making biofuel: LS9, Algenol, Algae Systems, Martek Biosciences, Solozyme

In agriculture, Bioscience, Biotechnology, cleantech, Energy, Environment, greentech, investment, Science, Sustainable, Venture Capital on February 4, 2010 at 10:13 am

Bookmark and Share


Five companies we should watch on the development of biofuel from Algae: LS9 and Solazyme in S. San Francisco, Algae Systems, Algenol in Florida and Martek Biosciences in Maryland. These companies are partnering with government and private industry to make strides in plant based fuels that can be produced locally with no toxic emissions.

1) LS9

Biofuels startup LS9 Inc. bought its first demonstration facility to create renewable petroleum.

The South San Francisco-based startup said Wednesday 2-3-10 that it bought the Okeechobee, Fla., factory for $2 million out of bankruptcy though it had been valued at $80 million. The plant, which was formerly used to convert animal waste into feed, will be retrofitted over 6 months to accommodate LS9’s production process, which produces fuel from raw materials in a one-step fermentation process.

CEO Bill Haywood said the company explored several options including renting existing facilities with fermentation equipment and building a new plant and intended to try and purchase fermenting equipment when it stumbled on the factory.

The company said it can produce 50,000 to 100,000 gallons of renewable diesel for its demonstration phase, but could also retrofit the factory into a full-scale commercial plant. “The real thing I’m most excited about is speed — our ability to scale up quickly and bring this incredible technology to the market very quickly,” Haywood said.

Finding facilities to demonstrate fuel technology at commercial scale is challenging and expensive for biofuels startups. Companies including Solazyme, Zeachem and Amyris Biotechnologies got a boost from the American Recovery and Reinvestment Act, which doled $600 million in biofuels grants. But LS9 was excluded.

2) Algae Systems in cooperation with NASA

Bookmark and Share


Algae Systems is a new company dedicated to commercializing a novel method for growing microalgae offshore as a biofuel feedstock. This approach, developed by a diverse team of scientists and engineers at the NASA Ames Research Center, is called the Algae OMEGA System.

NASA invented an algae photo-bioreactor that grows algae in municipal wastewater to produce biofuel and a variety of other products. The NASA bioreactor is an Offshore Membrane Enclosure for Growing Algae (OMEGA), which won’t compete with agriculture for land, fertilizer, or freshwater.
NASA’s Ames Research Center, Moffett Field, Calif., licensed the patent pending algae photo-bioreactor to Algae Systems, LLC, Carson City, Nev., which plans to develop and pilot the technology in Tampa Bay, Florida. The company plans to refine and integrate the NASA technology into biorefineries to produce renewable energy products, including diesel and jet fuel.

“NASA has a long history of developing very successful energy conversion devices and novel life support systems,” said Lisa Lockyer, deputy director of the New Ventures and Communication Directorate at NASA Ames. “NASA is excited to support the commercialization of an algae bioreactor with potential for providing renewable energy here on Earth.”

The OMEGA system consists of large plastic bags with inserts of forward-osmosis membranes that grow freshwater algae in processed wastewater by photosynthesis. Using energy from the sun, the algae absorb carbon dioxide from the atmosphere and nutrients from the wastewater to produce biomass and oxygen. As the algae grow, the nutrients are contained in the enclosures, while the cleansed freshwater is released into the surrounding ocean through the forward-osmosis membranes.

“The OMEGA technology has transformational powers. It can convert sewage and carbon dioxide into abundant and inexpensive fuels,” said Matthew Atwood, president and founder of Algae Systems. “The technology is simple and scalable enough to create an inexpensive, local energy supply that also creates jobs to sustain it.”

Bookmark and Share


3) Martek Biosciences in cooperation with BP:

Martek Biosciences is applying its expertise in developing nutritional products from algae and other microbial sources to produce biofuels.

The Columbia company announced a multiyear agreement with British global energy giant BP to convert sugar into biodiesel. Martek and BP plan to establish proof-of-concept for large-scale, cost-effective microbial biodiesel production through fermentation. BP committed to spending up to $10 million on the collaboration’s first phase.

“Martek is pleased to partner with BP’s Alternative Energy team, to combine our unique algae-based technologies and intellectual property for the creation of sustainable and affordable technology for microbial biofuel production,” said Steve Dubin, Martek CEO, in statement. “BP’s global leadership and commitment to alternative energy solutions complements Martek’s own commitment to responsible and sustainable products and production.”

“As an alternative to conventional vegetable oils, we believe sugar to diesel technology has the potential to deliver economic, sustainable and scaleable biodiesel supplies,” said Philip New, CEO of BP Biofuels. “In partnering with Martek, we combine the world’s leading know-how in microbial lipid production with our expertise in fuels markets and applications, and our more recent experience in biofuels production and commercialization.”

4. Solazyme in cooperation with Chevron

Bookmark and Share


Solazyme, Inc. is the leading renewable oil and bioproducts company. It was rated as the #1 Hot Company by Biofuels Digest for 2009 – 2010.  The company uses algal biotechnology to renewably produce clean fuels, chemicals, foods and health science products. Solazyme’s advanced and proprietary technology uses algae to produce oils and biomaterials in standard fermentation facilities quickly, cleanly, cost effectively and at large scale.

Solazyme And Chevron Technology Ventures Have a Biodiesel Feedstock Development And Testing Agreement

South San Francisco, Calif – January 22, 2008 – Solazyme, a synthetic biology company pioneering the clean and sustainable bioproduction of fuels, industrial chemicals and specialty ingredients from marine microbes, today announced that it has signed a biodiesel feedstock development and testing agreement with Chevron Technology Ventures, a division of Chevron U.S.A. Inc.

“Building a relationship with Chevron Technology Ventures is an important step toward commercialization of Solazyme’s technology which fits cleanly into Chevron’s existing refining and fuels distribution infrastructure.” said Jonathan Wolfson, chief executive officer of Solazyme.

Using a proprietary protected process that optimizes algal oil production, Solazyme is producing high-value, functional oils that can be leveraged across a wide variety of industries and applications including biodiesel, biojet and other biofuels. Solazyme has developed an industrial scale fermentation process currently capable of producing thousands of gallons of algal oil using standard industrial equipment. In addition, Solazyme has plans to dramatically expand production in 2008.

Solazyme has produced a variety of renewable algal oil and materials based products including:

  • biodiesel that meets ASTM D6751, EN 14214, and U.S. Military specifications
  • renewable diesel that meets ASTM D975
  • renewable jet fuel that meets all 11 key tested criteria for ASTM D1655 (Jet-A1)

5. Algenol Biofuels

Algenol’s prototype production strains can produce ethanol at a rate of 6,000 gallons/acre/year, and are expected to improve to 10,000 gallons/acre/year by the end of 2009. With further refinement, the algae cells have the potential to increase production rates to 20,000 gallons/acre/year in the future. There are over 100,000 species of blue-green algae useable with rapid growth cycles, high photosynthesis efficiency, large sugar storage attributes that Algenol has access to in refining algae with its Direct to EthanolTM process. The algae are metabolically enhanced to produce ethanol while being resistant to high temperature, high salinity, and high ethanol levels, which were previous barriers to ramping to commercial scale volumes.

Algenol only uses algae strains that do not produce human toxins. In addition, the specific algae cells used cannot live in the environment found outside their Capture TechnologyTM contained sealed bioreactor.

Algenol will now move into a 43,000 square foot facility near Fort Myers, that in addition to serving as company headquarters will serve as a pilot production plant, producing 300,000 gallons of ethanol per year, or three times the production at the pilot plant being built in Freeport, Texas in partnership with Dow (a project which recently was awarded a $25 million grant by the DOE as one of 19 integrated biorefinery pilot and demonstration projects). CEO Paul Woods told local media that the company will move into its new facility by May and will commence production of ethanol by August. The project will bring 100 new jobs to Florida, including 50 transferred from the company’s labs in Baltimore.

Bookmark and Share

JBEI and LS9 Biotechnology of SF converting Biomass to fuel with microbes: huge money saving potential

In agriculture, Bioscience, Biotechnology, cleantech, Energy, entrepreneur, Environment, greentech, Power Grid, Science, Sustainable, Technology, Venture Capital on January 31, 2010 at 10:59 am

The secret to cheap, sustainable fuel from waste is near and natural. We have microbes that can get the job done without expensive chemical conversions.

Bookmark and Share


Read about it in Science Daily.

ScienceDaily (Jan. 31, 2010) — A collaboration led by researchers with the U.S. Department of Energy’s Joint BioEnergy Institute (JBEI) has developed a microbe that can produce an advanced biofuel directly from biomass. Deploying the tools of synthetic biology, the JBEI researchers engineered a strain of Escherichia coli (E. coli) bacteria to produce biodiesel fuel and other important chemicals derived from fatty acids.
See Also:
Plants & Animals
Food
Bacteria
Matter & Energy
Fossil Fuels
Energy Policy
Earth & Climate
Energy and the Environment
Renewable Energy
Reference
Biomass
Biomass (ecology)
Biodiesel
Distributed generation
“The fact that our microbes can produce a diesel fuel directly from biomass with no additional chemical modifications is exciting and important,” says Jay Keasling, the Chief Executive Officer for JBEI, and a leading scientific authority on synthetic biology. “Given that the costs of recovering biodiesel are nowhere near the costs required to distill ethanol, we believe our results can significantly contribute to the ultimate goal of producing scalable and cost effective advanced biofuels and renewable chemicals.”
Keasling led the collaboration, which was was made up of a team from JBEI’s Fuels Synthesis Division that included Eric Steen, Yisheng Kang and Gregory Bokinsky, and a team from LS9, a privately-held industrial biotechnology firm based in South San Francisco. The LS9 team was headed by Stephen del Cardayre and included Zhihao Hu, Andreas Schirmer and Amy McClure. The collaboration has published the results of their research in the January 28, 2010 edition of the journal Nature. The paper is titled, “Microbial Production of Fatty Acid-Derived Fuels and Chemicals from Plant Biomass.”
A combination of ever-increasing energy costs and global warming concerns has created an international imperative for new transportation fuels that are renewable and can be produced in a sustainable fashion. Scientific studies have consistently shown that liquid fuels derived from plant biomass are one of the best alternatives if a cost-effective means of commercial production can be found. Major research efforts to this end are focused on fatty acids — the energy-rich molecules in living cells that have been dubbed nature’s petroleum.
Fuels and chemicals have been produced from the fatty acids in plant and animal oils for more than a century. These oils now serve as the raw materials not only for biodiesel fuel, but also for a wide range of important chemical products including surfactants, solvents and lubricants.
“The increased demand and limited supply of these oils has resulted in competition with food, higher prices, questionable land-use practices and environmental concerns associated with their production,” Keasling says. “A more scalable, controllable, and economic alternative route to these fuels and chemicals would be through the microbial conversion of renewable feedstocks, such as biomass-derived carbohydrates.”
E. coli isa well-studied microorganism whose natural ability to synthesize fatty acids and exceptional amenability to genetic manipulation make it an ideal target for biofuels research. The combination of E. coli with new biochemical reactions realized through synthetic biology, enabled Keasling, Steen and their colleagues to produce structurally tailored fatty esters (biodiesel), alcohols and waxes directly from simple sugars.
“Biosynthesis of microbial fatty acids produces fatty acids bound to a carrier protein, the accumulation of which inhibits the making of additional fatty acids,” Steen says. “Normally E. coli doesn’t waste energy making excess fat, but by cleaving fatty acids from their carrier proteins, we’re able to unlock the natural regulation and make an abundance of fatty acids that can be converted into a number of valuable products. Further, we engineered our E. coli to no longer eat fatty acids or use them for energy.”
After successfully diverting fatty acid metabolism toward the production of fuels and other chemicals from glucose, the JBEI researchers engineered their new strain of E. coli to produce hemicellulases — enzymes that are able to ferment hemicellulose, the complex sugars that are a major constituent of cellulosic biomass and a prime repository for the energy locked within plant cell walls.
“Engineering E. coli to produce hemicellulases enables the microbes to produce fuels directly from the biomass of plants that are not used as food for humans or feed for animals,” Steen says. “Currently, biochemical processing of cellulosic biomass requires costly enzymes for sugar liberation. By giving the E. coli the capacity to ferment both cellulose and hemicellulose without the addition of expensive enzymes, we can improve the economics of cellulosic biofuels.”
The JBEI team is now working on maximizing the efficiency and the speed by which their engineered strain of E. coli can directly convert biomass into biodiesel. They are also looking into ways of maximizing the total amount of biodiesel that can be produced from a single fermentation.
“Productivity, titer and efficient conversion of feedstock into fuelare the three most important factors for engineering microbes that can produce biofuels on an industrial scale,” Steen says. “There is still much more research to do before this process becomes commercially feasible.”
This research was supported by funds from LS9, Inc., and the UC Discovery Grant program. LS9 is using synthetic biology techniques to develop patent-pending UltraClean™ fuels and sustainable chemicals. The UC Discovery Grant program is a three-way partnership between the University of California, private industry and the state of California that is aimed at strengthening and expanding California’s economy through targeted fields of research.

Bookmark and Share